
Self-Driving Golf Cart Documentation
Release 0.1.5

Neil Nie

Nov 06, 2020

Contents

1 Tutorials 3
1.1 Getting Started . 3
1.2 Running the Simulation . 3

1.2.1 Build Unreal Engine . 4
1.2.2 Installing Carla . 4
1.2.3 Running the Simulation . 4

2 ROS 7
2.1 About ROS . 7

2.1.1 Terminology . 7
2.1.2 Packages & Nodes . 7
2.1.3 ROS Topics for visualization . 9

3 Modules 11
3.1 End-to-End Steering . 11

3.1.1 Introduction . 11
3.1.2 How to Run Inferencing . 11
3.1.3 I3D Model Architecture . 12

3.2 Semantic Segmentation . 12
3.3 Drive by Wire . 12

4 Information 13
4.1 License . 13
4.2 Contact . 13

i

ii

Self-Driving Golf Cart Documentation, Release 0.1.5

Welcome! This is an open source self-driving development platform aimed for rapid prototyping, deep learning and
robotics research. The system currently runs on a modified electric golf cart, but the code could work on a real car as
well. Here are our goals:

Goals:

• Research and develop a deep learning-driven self-driving car.

• The vehicle should be able to navigate from point A to point B autonomously within a geofenced area.

Contents 1

Self-Driving Golf Cart Documentation, Release 0.1.5

2 Contents

CHAPTER 1

Tutorials

1.1 Getting Started

1.2 Running the Simulation

Building a self-driving car is hard. Not everyone has access to expensive hardware. I am currently trying to integrate
this project with the CARLA self-driving simulator. If you are interested in CARLA, please refer to the following
documentation. (The current ROS system in this project can only partially run on the CARLA simulator)

3

Self-Driving Golf Cart Documentation, Release 0.1.5

1.2.1 Build Unreal Engine

Please note that Unreal Engine repositories are private. In order to gain access you need to add your GitHub user-
name when you sign up at www.unrealengine.com.

Download and compile Unreal Engine 4.18. Here we will assume you install it at “~/UnrealEngine_4.18”, but you
can install it anywhere, just replace the path where necessary:

$ git clone --depth=1 -b 4.18 https://github.com/EpicGames/UnrealEngine.git ~/
→˓UnrealEngine_4.18
$ cd ~/UnrealEngine_4.18
$./Setup.sh && ./GenerateProjectFiles.sh && make

Check Unreal’s documentation “Building On Linux” if any of the steps above fail.

1.2.2 Installing Carla

To install Carla the simulator is simple. Just head over to their releases page on Github and download the latest
pre-built release. At the time of writing, the latest release can be found here: https://drive.google.com/open?id=
1JprRbFf6UlvpqX98hQiUG9U4W_E-keiv

1.2.3 Running the Simulation

1. Setting Up:

1.1. Install CARLA

Download the compiled version of the CARLA simulator from here

Please refer to the CARLA documentation or open an issue if you have any questions or problems.

4 Chapter 1. Tutorials

https://drive.google.com/open?id=1JprRbFf6UlvpqX98hQiUG9U4W_E-keiv
https://drive.google.com/open?id=1JprRbFf6UlvpqX98hQiUG9U4W_E-keiv

Self-Driving Golf Cart Documentation, Release 0.1.5

1.2. Install the CARLA Python API

At this point, you should have downloaded the compiled version of the CARLA simulator.

$ sudo easy_install <path/to/carla/>/PythonAPI/<your_egg_file>

Just as an example, for me, the command is this:

$ sudo easy_install '/home/neil/carla/PythonAPI/carla-0.9.2-py2.7-linux-x86_64.egg'

Please note that you have to put in the complete path to the egg-file including the egg-file itself. Please use the one,
that is supported by your Python version. Depending on the type of CARLA (pre-build, or build from source), the egg
files are typically located either directly in the PythonAPI folder or in PythonAPI/dist.

Check the installation is successfull by trying to import carla from python:

$ python -c 'import carla;print("Success")'

You should see the Success message without any errors.

1.3. Install other requirements:

$ sudo apt-get install python-protobuf
$ pip install --user simple-pid

If you have followed the instructions closely, you should be ready to use CARLA and the simulation_package

2. Running

2.1. Compile the project

Navigate to the ros directory of the self-driving golf cart project:

$ cd [PROJECT_DIRECTORY]/ros

Then enter & run the commands:

$ catkin_make
$ source devel/setup.bash

2.2. Launch CARLA

First run the simulator. For the full and latest documentary, please always refer to the carla official website. (see carla
documentation: http://carla.readthedocs.io/en/latest/). I have created a simple script. Enter the following command
and run the script:

$ rosrun simulation launch_carla.sh

Wait for the message:

$ Waiting for the client to connect...

1.2. Running the Simulation 5

http://carla.readthedocs.io/en/latest/

Self-Driving Golf Cart Documentation, Release 0.1.5

2.3. Start the ros bridge & rviz

$ roslaunch simulation carla_client_with_rviz.launch

You should see a new rviz window. You can setup the vehicle configuration config/settings.yaml.

This launch file also make use of the CARLA Python API script manual_control.py. This spawns a vehicle with
role_name=’hero’ which is interpreted as the ego vehicle as defined by the config/settings.yaml.

The launch file also further spawn 30 other vehicles using spawn_npc.py from CARLA Python API. Then those
vehicles will show up also on ROS side.

6 Chapter 1. Tutorials

CHAPTER 2

ROS

2.1 About ROS

Below you will find information about all the ROS packages, nodes, topics used in this project.

2.1.1 Terminology

ROS (robot operating system): a collection of software frameworks for robot software development. It provides
services designed for hardware abstraction, low-level device control, implementation of commonly used functionality,
message-passing between processes, and package management.

ROS Nodes a process that performs computations. Nodes are combined together into a graph and communicate with
one another using streaming topics, RPC services, and the Parameter Server.

2.1.2 Packages & Nodes

Here is a list of packages. Underneath each package are nodes in that package.

simulation

The major purpose of the simulation package is to connect our self-driving system to CARLA simulator. To run the
package, please refer to the documentation [here](./src/simulation/README.md).

The simulation package can also run simulated camera inputs using the camera_sim_node

Nodes:

$ carla_client
$ camera_sim_node

Launch Files:

7

Self-Driving Golf Cart Documentation, Release 0.1.5

$ carla_client.launch
$ carla_client_with_rviz.launch
$ carla_client_with_rqt.launch
$ start_camera_sim.launch

autopilot

The autopilot package is the brain of the self-driving car. It uses end-to-end deep learning to predict the steering,
acceleration and braking commands of the vehicle. while subscribes to the camera feed. (Node currently functioning)
The Arduino subsribes to the steering_cmds and controls the steering accordingly.

Nodes:

$ autopilot
$ visualization

Publishes (the autopilot node):

$ /vehicle/dbw/steering_cmds/
$ /vehicle/dbw/cruise_cmds/

Subscribes (all nodes):

$ /cv_camera_node/image_raw
$ /cv_camera_node/image_sim

object_detection

YOLO (You Only Look Once) realtime object detection system.

Nodes:

$ object_detection_node

Publishes:

$ /detection/object/detection_visualization/
$ /detection/object/detection_result

Subscribes:

$ /cv_camera_node/image_raw

segmentation

Semantic segmentation node. Deep learning, ConvNets

Nodes:

$ segmentation_node

Publishes:

$ /segmentation/visualization/
$ /segmentation/output

8 Chapter 2. ROS

Self-Driving Golf Cart Documentation, Release 0.1.5

Subscribes:

$ /cv_camera_node/image_raw

cv_camera

The cameras are the main sensors of the self-driving car.

Nodes:

$ cv_camera_node

Publishes:

$ /cv_camera_node/image_raw

driver

This is the main package of the project. It pulls together all the individual nodes to create a complete self-driving
system.

**Nodes: $ drive

gps

Used for localization. Currently using the Adafruit GPS module, serial communication.

Nodes:: $ gps_receiver $ nmea_topic_driver $ nmea_topic_serial_reader

The GPS package manages and publishes the data received from a GPS module connected via serial. The package

Publishes:

$ /sensor/gps/fix
$ /sensor/gps/vel

osm_cartography

Nodes:

$ osm_client
$ osm_server
$ viz_osm

This package broadcasts and processes .osm files. OSM files are OpenStreetMap files which contain detailed informa-
tion about the environment, such as coordinates of roads, building and landmarks. Currently, the main function of the
package is to broadcast the osm info to rviz for visualization. (Node currently functioning)

2.1.3 ROS Topics for visualization

2.1. About ROS 9

Self-Driving Golf Cart Documentation, Release 0.1.5

$ /visual/steering/angle_img
$ /visual/detection/object/bbox_img
$ /visual/detection/lane/marking_img
$ /visual/segmentation/seg_img

10 Chapter 2. ROS

CHAPTER 3

Modules

3.1 End-to-End Steering

3.1.1 Introduction

In 1989, ALVINN, the self-driving car (truck) made by Dr. Dean Pomerleau and his team, drove around the Carnegie
Mellon campus. According to Pomerleau, The vehicle was powered by a CPU slower than the Apple Watch. The
car used a fully connected neural network to predict the steering angle of the car in real time. Fast forward twenty
years, NVIDIA proposed a novel method that combines Pomerleau’s idea with the modern GPU, giving NVIDIA’s car
the capability to accurately perform real-time end to end steering prediction. Around the same time, Udacity held a
challenge that asked researchers to create the best end to end steering prediction model. This project is deeply inspired
by that competition, and the goal is to further the work in behavioral cloning for self-driving vehicles.

3.1.2 How to Run Inferencing

1. Clone/download this repository

2. Download the pre-trained weights here: https://drive.google.com/file/d/19DR2fIR6yl_DdqQzPrGrcvbp_
MxXC0Pa/view?usp=sharing. 3.:

$ cd <YOUR REPO DIRECTORY>

Then in your own Python program or Python console:

$ from steering_predictor import SteeringPredictor
$ predictor = SteeringPredictor('<SAVED MODEL PATH>', '<MODEL TYPE>')
$ steering_pred = predictor.predict_steering_angle(<IMAGE>)

Please note that the possible model types are rgb and flow. The input image must be an RGB image of any size. For
more information, please refer to the code comments and documentations.

11

https://drive.google.com/file/d/19DR2fIR6yl_DdqQzPrGrcvbp_MxXC0Pa/view?usp=sharing
https://drive.google.com/file/d/19DR2fIR6yl_DdqQzPrGrcvbp_MxXC0Pa/view?usp=sharing

Self-Driving Golf Cart Documentation, Release 0.1.5

3.1.3 I3D Model Architecture

Motives

NVIDIA’s paper used a convolutional neural network with a single frame input. I believe that, even though this
architecture yielded good results, the single frame CNN doesn’t provide any temporal information which is critical in
self-driving. This is the motive behind choosing the i3d architecture, which is rich in spacial-temporal information.

Model

The input of the network is a 3d convolutional block, with the shape of n * weight * height * 3. n is the length of
the input sequence. Furthermore, the network also uses nine inception modules. The output layers are modified to
accommodate for this regression problem. A flatten layer and a dense layer are added to the back of the network.

Results

During training, RMSE (root mean squared error) is used for the loss function. Udacity’s open source driving dataset
is used for training and testing. RMSE is also the benchmark for the validation results. For the results of the Udacity
challenge, please click [here](https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2).

Model Type | Parameters | Training Loss| Validation Score|
—————— |:————:| ————:| —————:|
Single Frame ConvNet | – million | — | 0.1320 |
i3d 32 Frame RGB | 12.2 million | 0.0299 | 0.0862 |
i3d 64 Frame RGB | 12.2 million | 0.0430 | 0.0530 |

The i3d model architecture proved that spacial-temporal information could drastically improve the performance of the
behavioral cloning system. After fewer than 80K steps of training, the network’s validation loss scored half of the
validation score of the single frame CNN.

Performance

This good performance comes at a cost. On the one hand, the 32 frames i3d network’s inference time on a GTX 1080
is 0.07 seconds, making the realtime frame rate ~15fps. On the other hand, the 64 frames network’s inference time
is 0.13 seconds, which makes the frame-rate ~7fps. One of the best ways to improve performance is to improve the
hardware of the system. A fast multicore CPU with hyper-threading would drastically improve the inference speed.

3.2 Semantic Segmentation

3.3 Drive by Wire

12 Chapter 3. Modules

https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2

CHAPTER 4

Information

4.1 License

Copyright (c) 2017-2018 Yongyang (Neil) Nie

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.2 Contact

If you have any questions, comments or concerns about the code, please email me at contact@neilnie.com.

13

mailto:contact@neilnie.com

	Tutorials
	Getting Started
	Running the Simulation
	Build Unreal Engine
	Installing Carla
	Running the Simulation

	ROS
	About ROS
	Terminology
	Packages & Nodes
	ROS Topics for visualization

	Modules
	End-to-End Steering
	Introduction
	How to Run Inferencing
	I3D Model Architecture

	Semantic Segmentation
	Drive by Wire

	Information
	License
	Contact

